

Available online at www.sciencedirect.com

Nonlinear Analysis 68 (2008) 2005-2012

www.elsevier.com/locate/na

Viscosity methods of approximation for a common fixed point of a family of quasi-nonexpansive mappings

Habtu Zegeye^a, Naseer Shahzad^{b,*}

^a Bahir Dar University, P.O. Box 859, Bahir Dar, Ethiopia ^b Department of Mathematics, King Abdul Aziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Received 8 June 2006; accepted 17 January 2007

Abstract

Let *K* be a nonempty closed convex subset of a real reflexive Banach space *E* that has weakly continuous duality mapping J_{φ} for some gauge φ . Let $T_i : K \to K$, i = 1, 2, ..., be a family of quasi-nonexpansive mappings with $F := \bigcap_{i \ge 1} F(T_i) \neq \emptyset$ which is a sunny nonexpansive retract of *K* with *Q* a nonexpansive retraction. For given $x_0 \in K$, let $\{x_n\}$ be generated by the algorithm $x_{n+1} := \alpha_n f(x_n) + (1 - \alpha_n)T_n(x_n), n \ge 0$, where $f : K \to K$ is a contraction mapping and $\{\alpha_n\} \subseteq (0, 1)$ a sequence satisfying certain conditions. Suppose that $\{x_n\}$ satisfies condition (A). Then it is proved that $\{x_n\}$ converges strongly to a common fixed point $\bar{x} = Qf(\bar{x})$ of a family T_i , i = 1, 2, ... Moreover, \bar{x} is the unique solution in *F* to a certain variational inequality. (c) 2007 Elsevier Ltd. All rights reserved.

MSC: 47H09; 47J25

Keywords: Nonexpansive mappings; Quasi-nonexpansive mappings; Weakly continuous duality mappings

1. Introduction

Let *E* be a real Banach space with dual E^* . A gauge function is a continuous strictly increasing function $\varphi : \mathbf{R}^+ \to \mathbf{R}^+$ such that $\varphi(0) = 0$ and $\lim_{t\to\infty} \varphi(t) = \infty$. The duality mapping $J_{\varphi} : E \to E^*$ associated with a gauge function φ is defined by $J_{\varphi}(x) := \{u^* : \langle x, u^* \rangle = \|x\| . \|u^*\|, \|u^*\| = \varphi(\|x\|)\}, x \in E$, where $\langle ., . \rangle$ denotes the generalized duality pairing. In the particular case $\varphi(t) = t$, the duality map $J = J_{\varphi}$ is called the *normalized duality map*. We note that $J_{\varphi}(x) = \frac{\varphi(\|x\|)}{\|x\|} J(x)$. It is known that if *E* is smooth then J_{φ} is single valued and norm to w^* continuous (see, e.g., [6]).

Following Browder [3], we say that a Banach space *E* has the *weakly continuous duality mapping* if there exists a gauge function φ for which the duality map J_{φ} is single valued and weak to weak^{*} sequentially continuous (i.e. if $\{x_n\}$ is a sequence in *E* weakly convergent to a point *x*, then the sequence $\{J_{\varphi}(x_n)\}$ converges weak^{*} to $J_{\varphi}(x)$).

It is known that $l^p(1 spaces have a weakly continuous duality mapping <math>J_{\varphi}$ with a gauge $\varphi(t) = t^{p-1}$.

* Corresponding author. *E-mail addresses:* habtuzh@yahoo.com (H. Zegeye), nshahzad@kau.edu.sa, Naseer_shahzad@hotmail.com (N. Shahzad).

⁰³⁶²⁻⁵⁴⁶X/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2007.01.027