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Abstract DNA profiling is a key tool for forensic analysis;
however, current methods identify a suspect either by direct
comparison or from DNA database searches. In cases with
unidentified suspects, prediction of visible physical traits e.g.
pigmentation or hair distribution of the DNA donors can pro-
vide important probative information. This study aimed to
explore single nucleotide polymorphism (SNP) variants for
their effect on hair colour prediction. A discovery panel of
63 SNPs consisting of already established hair colour markers
from the HIrisPlex hair colour phenotyping assay as well as
additional markers for which associations to human pigmen-
tation traits were previously identified was used to develop
multiplex assays based on SNaPshot single-base extension
technology. A genotyping study was performed on a range

of European populations (n=605). Hair colour phenotyping
was accomplished by matching donor’s hair to a graded col-
our category system of reference shades and photography.
Since multiple SNPs in combination contribute in varying
degrees to hair colour predictability in Europeans, we aimed
to compile a compact marker set that could provide a reliable
hair colour inference from the fewest SNPs. The predictive
approach developed uses a naïve Bayes classifier to provide
hair colour assignment probabilities for the SNP profiles of the
key SNPs and was embedded into the Snipper online SNP
classifier (http://mathgene.usc.es/snipper/). Results indicate
that red, blond, brown and black hair colours are predictable
with informative probabilities in a high proportion of cases.
Our study resulted in the identification of 12 most strongly
associated SNPs to hair pigmentation variation in six genes.
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Introduction

Forensic genetics now encompass the field of forensic DNA
phenotyping (FDP) that aims to reconstruct externally visible
characteristics (EVCs) from DNA obtained from the crime
scene. FDP differs from traditional DNA typing in many
regards and moves away from identification towards guidance
of criminal investigations that failed to identify a crime scene
sample when no suspect matched the DNA profile or was
found in DNA database searches [1–5].

Pigmentation traits are amongst the most variable and con-
spicuous human phenotypes, making them particularly infor-
mative characteristics for the initial introduction of FDP to
forensic analysis. Diversity in the colour of skin, hair and eyes
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is mainly determined by production of melanin, represented
by the two distinct forms of eumelanin (brown to black) and
pheomelanin (yellow to reddish-brown) [6]. Variation in hair
pigmentation is predominantly confined to Europeans,
reaching its maximum phenotypic range in an area centred
on the Eastern Baltic extending over the North and East of
Europe. Outside Europe, hair colour is black with some
notable exceptions such as Near East [7] and Melanesian
populations [8]. Within Europe, human hair colour ranges
from the darkest black to the lightest white-blond hues
with numerous variations generally summarised into
broader colour categories: black, brown, blond and red,
while sub-categories Bbrunette^, Bchestnut brown^,
Bauburn^ and Bstrawberry red^ are also recognised. This
diversity can be explained by positive selection favouring
light or fair pigmentation traits that has been in effect in
European populations for over 5000 years [9].

Studies of the genetic basis of human pigmentation diver-
sity indicate a high heritability and few genes playing a key
role in determining hair colour [10–13]. Individual-specific
differences are largely due to single-nucleotide polymor-
phisms (SNPs), with the largest proportion showing strong
signals of association to human pigmentation variation from
genome-wide association studies (GWAS) [14–17]. The first
human polymorphisms recognised to have hair pigmentation
association were in melanocortin 1 receptor (MC1R) [18], and
subsequently, melanocortin receptor protein was identified as
a key regulator of melanogenesis [19]. Many of the numerous
MC1R variants have strong association with the red hair col-
our (RHC) phenotype [20]. In contrast to red hair, blond hair
has been less extensively studied, but SNPs in TYRP1,
TPCN2, KITLG and ASIP differentiate blond from other hair
colours [16, 21, 22]. Black hair is commonly recognised as the
ancestral phenotype, with ASIP [23] and SLC45A2 [24, 25]
SNP associations in Europeans.

Forensic hair colour predictive tests aiming to exploit the
above SNP associations began with a test for 12 MC1R var-
iants to predict red hair [26]. Several years later, these were
extended by Branicki et al. to analyse the full range of
European hair colours [21]. The model developed by
Branicki includes 11 SNPs in ten genes, together with two
MC1R classes of low-penetranceMC1R-r variants with reces-
sive effect and high-penetrance MC1R-R variants with dom-
inant effect. Branicki’s study assessed the scope for hair colour
prediction with a multinomial logistic regression model and
achieved area under the receiver operator characteristic curve
(AUC) values >0.9 for red hair, almost 0.9 for black and ≈0.8
for blond and brown hair. These studies formed the basis for
development of the HIrisPlex system [27], a single multiplex
of 24 eye and hair colour predictive markers, including 13 of
MC1R and incorporating four from IrisPlex [28]. HIrisPlex
was recently enhanced with a much larger reference database
and an online predictive tool [29] that now provides predictive

accuracies of 69.5 % for blond hair, 78.5 % for brown, 80 %
for red and 87.5 % for black.

Although HIrisPlex already provides an informative and
robust test system for predicting common pigmentation vari-
ation, we wished to explore a range of additional SNP variants
together with new compilations of established SNP sets iden-
tified by previous studies, for their predictive value for hair
colour variation in European populations. We previously de-
veloped a forensic eye colour predictive test comprising 13
SNPs from analysis of 37 pigmentation-associated SNPs [30].
The 37 SNPs formed two discovery panels termed SHEP 1
and SHEP 2 (skin, hair and eye pigmentation), and in this
study, we added recently identified hair colour-associated
markers into a new SHEP 4 assay to assess 63 SNPs in total.
The SHEP assays were used to genotype 605 subjects from 17
European countries. Statistical analysis of genotype data
gauged the predictive power of the analysed SNPs, including
amongst others, logistic regression (LR) analysis and discrim-
inant analysis of principal components (DAPC).

As with previous assessments of eye colour predictability
from small-scale SNP tests, we centred the main pigmentation
phenotype prediction strategy on a naïve Bayes system by
uploading profiles to Snipper [http://mathgene.usc.es/
snipper/index.php]. Snipper already contains links for the
prediction of eye and skin colour, and to extend this
functionality, it has been updated with links for hair colour.
The predictive value of a reduced set of the most closely
associated hair SNPs was assessed with these same tools.
Assessing the predictive performance of systematically
reduced SNP sets for four hair colours provided a final set of
12 markers most strongly associated with hair colour and the
best forensic classification framework for our data. The
accuracy of the final set was assessed through receiver
operating characteristic (ROC) analysis and calculation of
the associated AUC. The main aim of this study was to exam-
ine in detail the individual contribution of SNPs known to be
associated with hair colour and therefore informative for in-
ference of hair colour in forensic analyses. For this reason, we
compiled a compact SNP set that maintains reasonable pre-
dictive performance but with differences in SNP components
to those of HIrisPlex. It is important to emphasise that the
main study objective was not to replace HIrisPlex but to con-
tribute to a better understanding of the SNP variants that un-
derlie hair colour phenotypes by comparing the key predictors
of both sets.

Materials and methods

Population samples

Samples comprised 605 unrelated Europeans (63.8 % females
and 36.2 % males) from 17 populations (Supplementary
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Fig. S2). Donors were from Spain (284), Germany (228),
Sweden (24), Austria (18), Italy (13), Denmark (10),
Norway (6), England (6), Finland (4), Portugal (3),
Netherlands (2), Poland (2), Bosnia (1), Slovakia (1),
Luxembourg (1), Greece (1) and Switzerland (1). All partici-
pants gave informed consent, and ethical approval was
granted from the clinical investigation ethics committee,
Galicia, Spain (CEIC: 2009/246).

Data was collected for participant’s grandparental ancestry,
with individuals using hair colouring or with grey hair exclud-
ed from sampling altogether (not in the 605 collected). Less
frequent hair colour phenotypes like Bwhite-blond^ and
Bcarrot-red^ were not intentionally enriched and reflect corre-
sponding frequencies in sampled populations in Europe [7].
To minimise hair tone variation due to the bleaching effects of
sun and saltwater exposure, samples were taken between au-
tumn and winter. In addition to the University of Santiago de
Compostela population set, we tested the performance of the
predictive approach developed in this work on an indepen-
dently collected subset of individuals from Göttingen,
Germany (n=63). Phenotypes for hair, eye and skin pigmen-
tation were recorded by a dermatologist.

Hair colour phenotyping

The phenotyping regime matched donor’s hair to the Fischer-
Saller graded colour category system of 30 natural reference
shades (Supplementary Fig. S3, GPM Anthropological
Instruments, Switzerland). The Fischer-Saller scale is a widely
used anthropological system for hair colour assessment [31]
and uses letters from A (white-blond) through to Y (black),
plus Roman numerals I–VI for red hair shades. The letter or
Roman numeral was recorded at time of sample collection by
a single scientist (not a dermatologist). For subjects with long
hair, the proximal part of the hair shaft, least affected by
bleaching effects, was examined. Hair colour was also
photographed (12-megapixel reflex Canon EOS 1000D cam-
era). To control photographic colour quality, a colour control
patch was used (Kodak, USA), and the patch’s white section
allowed white balance adjustment using GIMP software
v.2.8.10. Hair phenotype descriptions were placed into three
categorical divisions of two, four or eight hair colours. The
two-category division of light and dark omitted red and dark
blond to fair brown colours, similar to the light/dark shade
phenotyping regime of HIrisPlex. Red hair individuals were
excluded because the RHC phenotype is outside the continu-
ous spectrum of light to dark and depends on a MC1R muta-
tion spectrum. Since we only examined extreme tonalities,
intermediate tones were also excluded. The four-category des-
ignation comprised red, blond, brown and black, correspond-
ing to the widely used categorisation of hair colour used in
Branicki’s study [21] and for HIrisPlex [27]. The eight cate-
gory system differentiated fair and dark blond, light and dark

brown and black and placed red hair into carrot-red (orange-
copper), auburn (reddish-brown) and blond-red. Hence, we
applied one category more than Branicki and HIrisPlex that
both used a slightly different fine colour division for interme-
diate tones and did not consider fair blond as a category. In
addition to hair colour, we obtained iris colour by applying the
phenotyping approach of Ruiz et al. [30] to apply eye colour
as a covariate in the logistic regression (LR) analysis of hair
colour.

Training and testing sets

Training sets, forming reference data for the predictive models
applied, were established by condensing all samples collected
into a subset where hair colours were more clearly differenti-
ated. Four scientists (not dermatologists, two Spanish, two
German) independently classified photographs unsupervised,
into red, blond, brown and black categories. This photograph-
ic review did not refer to Fischer-Saller hair colour informa-
tion, and samples not classified identically by all reviewers
were removed. A 230-sample training set of four hair colours
was established from 65 blond, 20 red, 90 brown and 55 black
individuals. The remaining 375 samples formed the test set to
assess predictive model performance.

SNP selection

The discovery set of 63 pigmentation-associated SNPs was
genotyped in three assays, with SHEP1 and SHEP2 run as
previously described [30]. However, SHEP1 was extended
with skin colour-associated rs10763644 (MPP7) and hair
colour-associated rs10777129 (KITLG) and rs1426654
(SLC24A5). SNP rs10777129 was identified as a red/light
hair predictor by Mengel-From et al. [32]. SNP rs1426654
showed association with hair colour in general [33] and with
the variance of total hair melanin [12]. SHEP2 added SNPs
rs1492354 and rs12421746, also identified by Mengel-From
(by L*a*b* colorimetry) as red/light hair and blond hair pre-
dictors, respectively [32]. The novel assay SHEP4 adds main-
ly skin and hair predictive markers from searches of the most
recent literature. Primer3 [34] and AutoDimer [35] were used
to design, test and optimise amplification primers, creating
amplicon lengths ranging from 87 to 135 base pairs (bp).
Supplementary Table S1 lists primer and locus details for
SHEP4 SNPs and cites the published studies that informed
their selection as hair colour predictors. Some SNPs were only
reported as skin colour associated but were used to develop a
skin colour predictive test [36]. The exploratory set used by
Branicki analysed 45 SNPs from 12 genes previously as-
sociated with hair colour variation [21]. Of those, 10
markers were not included in the SHEP assays:
rs9378805, rs2733832, 207 rs2305498, rs1011176,
rs1800401, rs16950821, rs11635884, rs8039195,
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Y152OCH and N29insA. Except for the last two MC1R
loci, none of the 10 markers were implemented into the
prediction model developed by Branicki. MC1R InDel
N29insA was also tested in all carrot-red haired samples
in our study, but no variant alleles were detected, so incor-
poration of N29insA into the SHEP assays was not pur-
sued. We note that N29insA is amongst the most strongly
associated markers with red hair but is extremely rare, pro-
viding an example of a highly predictive marker that is not
common enough to merit inclusion compared to other more
frequent MC1R SNP alleles with less effect in single copy.

SNP genotyping

DNA was extracted with phenol-chloroform methods and
SNP genotyping accomplished as previously described [30].
In brief, SHEP assays amplify 1 μL DNA (min. 0.5 ng.) in
6.9 μL reaction volumes of the following: 1× AmpliTaq Gold
polymerase chain reaction (PCR) buffer (AB, Applied
Biosystems. Foster City, USA), 25 mM MgCl2, 10 mM
dNTP mix, 3.2 μg/μL BSA, 0.5 U AB AmpliTaq Gold poly-
merase and 1.5 μL of premixed PCR primers at variable con-
centrations. PCR cycling comprised 10 min at 95 °C, 32–
35 cycles of 95 °C for 30 s, 60 °C for 50 s, 65 °C for 40 s,
then an elongation at 65 °C for 6 min. Amplifications were
cleaned using 1 μL Exo-SAPit (USB Products, Affymetrix,
Santa Clara, USA) with 2.5 μL of PCR product, incubated
at 37 °C for 45 min then inactivated at 85 °C for 15 min.
Multiplexed minisequencing reactions used 1.25 μL of
SNaPshot ready reaction mix plus 0.75 μL of premixed ex-
tension primers and 1.25 μL of purified PCR product. Single-
base extension (SBE) cycling used 28–30 cycles of 96 °C for
10 s, 55 °C for 5 s and 60 °C for 30 s. Extension reaction
products were cleaned with 1 μL of SAP (USB) at 37 °C for
80min and heat inactivated at 85 °C for 15 min. Then, 1–3 μL
of SBE products were added to 9.5 μLABHiDi™ formamide
plus 0.3 μL AB LIZ-120 size standard. CE detection used the
ABI 3130xl Genetic Analyser (AB) with POP-4™ polymer
and 36 cm capillary arrays (injection voltage 2.0 kV for 22 s,
run time of 1000 s at 60 °C). Results were analysed with AB
Genemapper ID-X software.

Statistical analyses and classification models

This section outlines the most important components of
the statistical analyses made. More detailed information
on the application of discriminant analysis of principal
components (DAPC), linkage disequilibrium (LD)/haplo-
type block analysis and analysis of epistasis with multi-
factor dimensionality reduction (MDR) is given in
Supplementary Text S1.

Logistic regression

The 63 pigmentation-related SNPs were analysed for associ-
ation to hair colour using IBM PASW SPSS Statistical-18
software. Individual SNP associations in the training set were
analysed by LR with the additive model, assigning four hair
colour categories to the samples and comparing each colour
with the others (the alternative colours, herein termed the rest).

Apart from using an approach that did not take co-variables
into account, adjustment was made for rs12913832 in order to
detect the additional effect of other SNPs in close physical
linkage to this strongly associated HERC2 locus. SNP
rs12913832 forms an integral part of IrisPlex [28] and
HIrisPlex assays [29], as well as other pigmentation informa-
tive sets developed so far [12, 21, 30, 32, 37–40].

The Snipper classifier and iterative naïve Bayes analysis

The Snipper App suite version 2.0 (http://mathgene.usc.es/
snipper/) was applied as the standard tool to classify hair
colour. Originally developed to handle allele frequencies for
SNP-based ancestry analysis [41], Snipper was recently
adapted to allow prediction of EVCs. Snipper uses a naïve
Bayes classification system for single or multiple SNP profiles
by estimating the likelihood of membership to one of several
populations (phenotypes or ancestries) defined by their allele
frequencies estimated from uploaded or predefined training
sets as reference data. Likelihoods are ranked, and Snipper
assigns a profile to a population from the ratio of the two
largest likelihoods.

Since original adoption of the rs12913832-rs1129038 SNP
pair in eye colour tests, their close linkage in HERC2 is now
better handled by Snipper. It is still the user’s option to treat
SNPs as independent or linked, but the latter choice prompts
Snipper to convert each 2-SNP allele combination to nucleo-
tide labels. Details of the allele pair re-coding are outlined in
Supplementary Table S4, following simple AA→A, AG→C,
GA→G and GG→T formats.

We performed several statistical analyses forming part of
Snipper to evaluate the robustness of the hair colour reference
training set. Cross-validation divided the sample set into sub-
sets followed by construction of the prediction model in sev-
eral subsets and evaluating the model’s performance in the
remaining sets. Two types of cross-validationwere performed:
non-verbose cross-validation with one-out reclassification and
bootstrap analysis by random choice of a training set from the
full set and then classification of remaining samples with 200
iterations.

Snipper additionally measures the informativeness of each
marker from divergence estimates (Jensen and Shannon’s di-
vergence [42]). Finally, the predictive value of each SNP can
be estimated from the genetic distance algorithm of Snipper
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enabling the identification of key SNP genotypes and/or
alleles.

Our principal aim was testing established SNPs identified
in previous studies, e.g. those of HIrisPlex, together with ad-
ditional SNPs for their effect on hair colour prediction. To
identify the contribution of each SNP to classification success,
we developed a new approach, termed iterative naïve Bayes
(INB) analysis. Firstly, we ranked the 50 SNPs, suggested to
be most associated with hair colour in the current literature,
based on their classification power applied to a 230-sample
training set using Snipper with one SNP at a time. The best
SNP was then fixed in position, and the remaining set of 49
was re-analysed in the same way to find the next most pow-
erful combination of two SNPs. After finding this pairing, the
second SNP was fixed and the remaining SNPs were re-
analysed again. The process is iterated until all SNPs are
placed in ranked order of predictive power. INB was per-
formed for each pairwise phenotype differentiation (e.g. blond
vs. non-blond, etc.). One benefit of this approach is the iden-
tification of strong classifiers for one pairwise comparison that
may be weak for others.

Measuring classification performance

Following the classification approach of Branicki [21], we
performed an analysis of the AUC for ROC curves (area under
the receiver operating characteristic curve). AUC is the inte-
gral of ROC curves that ranges from 0.5 representing total
lack of predictive power to 1.0 representing perfect prediction.
This technique was applied as an additional assessment to
compare the informativeness of two SNP sets: the compact
set of 12 markers identified as most strongly associated to hair
colour by our study and 22 of the 24 of the HIrisPlex assay.
AUC analyses were made on the training and testing set to-
gether (605 samples) comprising four and additionally eight
hair phenotypes: carrot-red, auburn, blond-red, fair/dark
blond, light/dark brown and black. Cross-validation was im-
plemented for all AUC analysis to ensure independence.
Calculations were made using the ROCR [43] package in R
(ROCR v. 1.0-5, http://rocr.bioinf.mpi-sb.mpg.de/).

Classification performance of hair predictive SNPs
was measured with two different testing sets, comprising
samples not used in the training set. The first consisted
of 375 European samples collected alongside the training
set individuals with the same phenotyping regime.
Prediction performance was additionally analysed with
a test set of 63 Germans, comprising nine with red hair,
22 blond, 30 brown and two black. A 3:1 minimum prob-
ability threshold was applied to all classifications (i.e. a
ratio for the highest and second highest likelihoods be-
low 3 was treated as not classified) to estimate the clas-
sification success.

Results

Prediction modelling

Phenotypes collected in the European samples consisted of
159 blond, 299 brown, 112 black and 35 red hair colour phe-
notypes. We observed a high frequency of light hair shades
(fair blond to light brown) in northern and central European
subjects, decreasing towards the south as shown in
Supplementary Fig. S2 and in agreement with previous find-
ings [7].

The results of logistic regression (LR) analysis of hair col-
our association in 63 SNPs are detailed in Supplementary
Table S2. In the model which does not consider HERC2
SNP rs12913832 as a co-variable, 24 SNPs gave strong asso-
ciations with p values below 0.0008 (threshold of significant
probability under multi-test correction for 63 SNPs), compris-
ing rs1015362, rs1110400, rs1129038, rs11636232,
rs12592730, rs12896399, rs12913832, rs12931267,
rs1667394, rs16891982, rs1805005, rs1805007, rs1805009,
rs28777, rs35264875, rs4778138, rs4778232, rs4778241,
rs4904868, rs7174027, rs7495174, rs8024968, rs885479 and
rs916977. By applying rs12913832 as a co-variable, the num-
ber of significantly associated SNPs was reduced to eight out
of this group. Of the 63 SNPs, 13 did not have hair colour
association reported in the literature but did indicate eye and/
or skin pigmentation association (marked in grey italics in
Supplementary Table S2). Moreover, these 13 SNPs were
not found to be significantly associated in LR analysis when
adjusting for rs12913832 as a covariate, supporting their lack
of a direct relationship with hair colour. However, of these 13
SNPs, three eye colour-associated SNPs rs12592730
(HERC2), rs4778232 and rs8024968 (OCA2) gave significant
p values in the model without a co-variable, but we did not
pursue the analysis of these SNPs further. For this reason, the
13 SNPs were removed from the marker set, and the remain-
ing 50 SNPs were examined with iterative naïve Bayes (INB)
analysis.

INB analysis produced a ranked order of informativeness
for each of four hair colour comparisons as shown in
Supplementary Fig. S1, with the rising plotline in each graphic
corresponding to the contribution to classification success of
each new marker added to the existing combination. These
plots indicate a subset of 12 markers that keep the maximum
proportion of predictive power that can be constructed, based
on discernable early (leftmost) inflection points indicated by
the arrows on each plot. Although there are multiple inflection
points on each hair colour plot, the first strong change in line
angle provides a simple system to identify the point where all
the best predictors have been assembled. For red vs. rest,
classification performance reached 93 % success with six
SNPs in ranked order: rs1805007, rs11547464, rs1805008,
rs35264875, rs1805009 and rs7495174. Blond classifications
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reached 90 % with rs1129038 and rs4778138. Brown classi-
fications reached 61 % success with rs35264875, rs1805006
and rs11547464. Black classifications reached 86 % success
with rs12913832, rs28777, rs12931267 and rs1805008. From
overlapping SNPs in each category, a final set of 12 common
SNPs from five genes comprised rs28777 (SLC45A2),
rs35264875 (TPCN2), rs1129038, rs12913832 (HERC2),
rs4778138, rs7495174 (OCA2), rs12931267 (FANCA),
rs11547464, rs1805006, rs1805007, rs1805008 and
rs1805009 (MC1R).

Haploview was used to discount LD between the SNP in
the HERC2 gene, applying a correlation threshold of r2<0.8.
Haploview results for close SNP pairs on chromosome 15 in
the set of 12 SNPs are shown in Supplementary Fig. S4. The
r2 value for the strongest linkage was found between both
HERC2 SNPs of rs1129038 and rs12913832, r2=0.659. In
INB analysis, HERC2 SNP rs1129038 was the strongest
marker for blond hair colour and rs12913832 was the stron-
gest for black hair. Although both markers are in close prox-
imity and previously reported to be in LD [44], the r2 value for
this SNP pair did not reach the correlation threshold in our
data set. The 12 SNPs of MC1Rwere not assessed for LD and
treated as independent in Snipper analyses.

Prediction performance

Predictive performance was estimated using the success ratio
of the 12 SNPs for four hair colour categories, analysed by
verbose cross-validation in Snipper. The 12 SNPs gave 85 %
classification success for red hair, 92.3% for blond, 76.7% for
brown and 74.6 % for black. This analysis was also conducted
separately for men and women. Females gave 92.9 % for red,
87% for blond, 85.7% for brown and 62.5% for black.Males
gave 50 % for red, 89.5 % for blond, 58.8 % for brown and
74.2 % for black. Applying the same approach to two hair
colour shade phenotypes (12 SNPs, fair and dark) gave
93.9 % for fair and 94.6% for dark hair for both sexes com-
bined. Applying non-verbose cross-validation produced ex-
actly the same results.

Training set data (both regimes) for the 12 SNPs are avail-
able to use in Snipper at: http://mathgene.usc.es/snipper/
hairclassifier.html.

DAPC of training set profiles provides further assessment
of data structure based on phenotypes and results are shown in
Fig. 1. The Fig. 1 plots show genetic clustering of four
(Fig. 1a, b) and eight (Fig. 1c, d) different hair colour popu-
lations applying 63 SNPs (Fig. 1b, d) and 12 SNPs identified
by INB (Fig. 1a, c). A clear differentiation between the four
hair colour classes is discernable applying the full set of 63
SNPs (Fig. 1b). The application of just 12 SNPs leads to a loss
of separation and increased overlap, most notably between the
black and brown clusters. Sub-dividing four into eight hair
colours increases this overlap substantially.

The predictive performance of the 12 SNPs was further
assessed using two testing sets: (i) 375 European samples
recruited during the project and (ii) 63 novel samples from
Germany separated from the 605 used for the analyses de-
scribed so far, as they were collected by a dermatologist ap-
plying a subjective assignment of hair colour to the four clas-
ses we described. A 3:1 minimum probability threshold was
applied to the Snipper classifications, i.e. a ratio for the highest
and second highest likelihoods below three denoted no
classification.

For the first testing set, 76 (20.3 %) did not reach the min-
imum threshold ratio and remained unclassified. From the
remaining 299, 184 (61.5 %) were correctly classified into
the four hair classes: 77.78 % red, 84.71 % blond, 45.45 %
brown and 75% black. For the second testing set, 15 (23.8 %)
were unclassified, and of the remaining 48, 37 (77.1 %), were
correctly classified: 87.5 % red, 83.33 % blond, 71.43 %
brown and 0 % black. A detailed overview of each testing
set performance is provided in Supplementary Table S3. The
lack of black hair classification success in the northern
German sample can be explained by the relatively low sample
size for this phenotype with two black hair samples
misclassified as red and the other one unclassified.

AUC estimations of the ROC curves were made for
each pairwise phenotype comparison by cross-validating
genotypes. ROC curve analysis results for two different
sets of markers/hair phenotypes are shown in Fig. 2.
Results for the best 12 SNPs considering both training
and testing set individuals (n=605) reached 93.9 %
AUC value for red hair, 85 % for blond, 84.2 % for black
and 64.2 % for brown (Fig. 2a). Considering the same 12
SNPs and eight hair colour phenotypes, successful predic-
tions were 95.6 % for red-carrot, 85.9 % for black, 85.1 %
for red-blond, 83.5 % for fair blond, 78.5 % for dark
brown, 78.3 % for red-auburn, 78.0 % for dark blond
78.0 % and 64.0 % for fair brown (Fig. 2b). The applica-
tion of 22 SNPs from the HIrisPlex system provided AUC
values of 92.9 % for red hair, 86.3 % for black, 87.5 %
for blond and 64.3 % for brown (Fig. 2c). The overall
predictive success for 22 HIrisPlex markers (82.7 %)
was slightly higher than with our best 12 SNPs
(81.9 %). Similar results were obtained using 50 SNPs
suggested to be most associated with hair colour in the
current literature and which have been used for our INB
analysis (data not shown). The order of the SNPs shown
in Fig. 2 follows a ranked divergence order obtained from
Snipper.

MDR analysis was applied to the 12 key SNPs iden-
tified using training set samples. Positive entropy indi-
cating synergy (the effect of two interacting loci being
more than the sum of their individual effects) was found
for the brown vs. non-brown comparison. However, neg-
ative entropy effects were found, indicating redundancy
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(two loci with epistatic interactions with an effect less
than the sum of individual effects). The nature and the
strength of the interactions for brown hair colour are
shown in Supplementary Fig. S5.

Application of the Erasmus HIrisPlex DNA Phenotyping
Webtool

Genotypes of 605 samples containing training and testing set
individuals were introduced into the HIrisPlex DNA
Phenotyping Webtool according to user guidelines provided
on the web pages. Marker Y152OCH was not applied as it is
not part of the SHEP assays; similarly, N29insA, which was
only introduced for 18 carrot-red haired individuals, was not

used in these analyses as we did not detect the rare variant
allele in the carrot-red subjects.

In total, five samples were not classified by the
webtool due to missing MC1R genotypes. All showed
dark brown hair colour. Regarding the red haired indi-
viduals (n=35), 83 % were correctly classified by the
HIrisPlex Webtool. The remaining six misclassified sub-
jects were either classified as blond (n=4), ranging from
blond/dark blond to dark blond/brown, or as brown/dark
brown and dark brown/black (n=2). The group of blond
hair samples (n=159) was predicted correctly in 75 % of
the cases. More than half of the blond individuals in our
set were reported as dark blond when applying eight
categories. This was predicted by the enhanced model

Fig. 1 DAPC of training set profiles in different grouping schemes based
on the 12 SNP set (a, c) and the complete SNP panel (b, d). Clusters are
shown by different colours corresponding to the hair shades and inertia

ellipses, while symbols represent individuals. Smaller graph insets
represent eigenvalues of DA
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of the webtool with a success rate of 64 % as either
blond/dark blond or dark blond/brown. The rest of the
dark blond group was predicted simply as blond. One
single blond individual from the testing set was predicted
as black, 18 % as having brown hair (brown/dark brown
to dark brown/black) and 7 % as having red hair. Brown
hair samples from our set (n=299) were predicted cor-
rectly in 63 % of the individuals. The majority of brown
hair individuals in our set had dark brown hair (n=184).
Of those, 76 % were predicted as either brown/dark
brown or dark brown/black by the enhanced model.
The black hair colour group (n=112) was inferred as
brown/dark brown in 8%, as dark brown/black in 52 %

and as solely black in 29 % of the cases. Some black
haired individuals were assigned as blond (n=9) or red
hair colour (n=4).

In the next step, we analysed the predictive success of
HIrisPlex concerning our profiles for the training and testing
set separately. Regarding our training set (n=230), HIrisPlex
predicted red hair colour (n=20) with 85 % precision, blond
(n=65) with 88%, brown (n=90) with 70% and black (n=55)
with 85 % (dark brown/black to black). The profiles from the
testing set (n=375) yielded 80 % prediction accuracy for red
(n=15), 66 % for blond (n=94), 60 % for brown (n=209) and
75 % for black (n=57) when considering dark brown/black to
black predictions together.

Fig. 2 Evaluation of accuracy of hair colour prediction on the whole
sample set (n=605) by means of the area under the ROC curves
(AUC), ranging from 0.5 (random) to 1 (perfect) prediction. All AUC
calculations were made by applying cross-validation. In Fig. 2a, AUC
was plotted against the 12 best SNPs for predicting: red (93.9 %), blond
(85.5 %), black (84.2 %) and brown hair colour (64.2 %). Figure 2b
assesses AUC predictions from the 12 best SNPs for eight hair colours.
The order of the SNPs shown in Fig. 2b follows a ranked divergence

order obtained from Snipper of rs12913832 (HERC2), rs1129038
(HERC2), rs1805007 (MC1R), rs12931267 (FANCA), rs4778138
(OCA2), rs1805008 (MC1R), rs1805009 (MC1R), rs11547464
(MC1R), rs7495174 (OCA2), rs28777 (SLC45A2), rs35264875
(TPCN2) and rs1805006 (MC1R). Figure 2c analyses 22 of the 24
HIrisPlex markers (MC1R markers N29insA and Y152OCH not used).
For Fig. 2c, the SNP order also corresponds to divergence order obtained
from Snipper
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Discussion

This study has assessed a wide range of SNP variation affect-
ing hair colour prediction by investigating established SNPs
identified in previous studies, notably HIrisPlex [29], together
with additional pigmentation-associated SNPs. We found that
a subset of 12 SNPs can provide a reasonably good balance
between a manageable number of SNPs and reliable hair col-
our prediction accuracy. It is noteworthy that only seven SNPs
of the 12 in our final set match the 24 of HIrisPlex, comprising
the following: rs12913832, rs28777 and MC1R-R SNPs:
rs11547464, rs1805006, rs1805007, rs1805008 and
rs1805009. Our studies confirm rs12913832 as a strong pre-
dictor of both eye and hair colour [30]. The regulatory role of
rs12913832, located in HERC2 and influencing OCA2 tran-
scription, is well documented [45]. Amongst HIrisPlex SNPs,
it has the strongest predictive effect for non-red hair colour
together with rs16891982 and rs12203592 [29]. Several other
studies identified rs12913832 as the strongest marker for hair
colour inference [21, 46, 47] while a recent study by Branicki
identified several SNP-SNP interactions for rs12913832
influencing hair colour [48]. Apart from mild synergistic in-
teractions between rs12913832 and rs28777, we did not detect
comparable interactions. The SLC45A2 non-synonymous
SNP rs28777 is also common to HIrisPlex and the set of 12
predictors. SLC45A2 encodes a transporter protein that medi-
ates melanin synthesis, and rs28777 is amongst the SNPsmost
strongly associated with pigmentation in humans [24], and
other mammals [49]. The remaining five SNPs in common
are high-penetrance MC1R-R SNPs with dominant effect:
rs11547464, rs1805006, rs1805007, rs1805008 and
rs1805009 [50, 21].

The remaining five SNPs of our 12 SNP set that we iden-
tified as strongly associated but not part of HIrisPlex were the
following: rs7495174, rs4778138 (in OCA2), rs35264875
(TPCN2), rs1129038 (HERC2) and rs12931267 (FANCA).
The SNPs rs7495174 and rs4778138, in intron 1 of OCA2,
have previously been associated with eye colour [30] and hair
colour in general [21, 46, 47, 51], but more specifically to
blond vs. brown hair [14, 16] and black vs. blond hair [52].
Additional studies with spectrometrically measured hair col-
our indicated that rs7495174 was associated with dark hair
colour using the CIE L*a*b* metric [53]. Similarly,
rs4778138 was associated with dark hair colour applying a
difference in the A650t index (reflectance at 650 nm, trans-
formed for normality) for dark vs. light hair [54]. However,
the only variant from OCA2 in HIrisPlex is rs1800407, but
this SNP did not emerge as a key marker in the INB analysis
applied here and was therefore excluded from the set of 12
SNPs.

SNP rs1129038 in exon 93 of HERC2 is already known as
an eye colour predictor [30]. However, most eye colour pre-
dictive models discard this marker due to its LD with

rs12913832 [28, 47]. Its association to spectrometrically mea-
sured [54] and observer-reported hair colour has also been
published [53]. In our study, rs1129038 was the strongest
predictor of blond hair whereas SNP rs12913832 was the
strongest for black hair from INB analysis, so both of these
HERC2 loci were incorporated into the 12 SNP predictive set,
in the same way as previously described for eye colour [30].
Table 1 shows the predictive success for four hair colours
obtained with Snipper applying 12 SNPs with and without
the rs1129038-12913832 haplotype. The values in Table 1
indicate the effect of accommodating linkage by using SNP
allele combinations is negligible. Applying two hair colours,
no effect could be detected at all.

Of the SNPs not present in HIrisPlex, rs35264875 and
rs12931267 were strongly associated markers in our study.
The non-synonymous SNP rs35264875 in TPCN2 was
amongst the key markers for brown hair colour prediction
from INB analysis. This SNP was found to be significantly
associated with blond rather than brown hair in GWAS in
northern European population (Iceland and Netherlands)
[16]. The rs35264875-T allele occurred at a frequency of
22 %. Branicki reported a similar frequency in a Polish
cohort of 385 but did not detect a significant association
to any hair colour [21]. However, more recently, the same
group found significant association to black hair colour
from multivariate binary logistic regression analysis [48].
Moreover, Branicki found synergistic epistatic interactions
between rs35264875 and rs1042602 in TYR. SNP
rs1042602 is part of HIrisPlex although our study indicated
only moderate association from LR analysis but with no
discernable contribution to predictive success from INB
analysis, so this SNP was excluded. SNP rs12931267
was previously found to be highly associated with freckles
and hair colour in a GWAS of Eriksson et al. using self-
reported phenotype data from thousands of 23andMe ge-
netic test consumers [46]. Eriksson’s results matched a
strong association to black hair found in our INB analysis
and red hair from logistic regression analysis. This SNP is
in the Fanconi anaemia, complementation group A
(FANCA) gene near MC1R. The Fanca protein is involved
in a cell process known as the Fanconi anaemia pathway,
activated when DNA replication is blocked due to damage.
However, the link of Fanca with pigmentation variation
has not been described to date.

The SNP rs12203592 in IRF4 was found to be associated
with eye colour by Liu et al. [44] and was incorporated in
IrisPlex [28], although the study of Ruiz et al. did not find
strong association to eye colour [30]. This marker also showed
association with hair colour and is therefore informative for
both eye and hair colour in HIrisPlex. We found only moder-
ate association of rs12203592 with blond and black hair in LR
analysis, but it showed minor predictive power in INB analy-
sis and was excluded.
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The iterative naïve Bayes analysis we developed for hair and
skin colour variation studies [36] provides a feasible tool for
identifying the best EVC predictors for a trait from pairwise
comparisons of classification success. Using the online tool
for hair colour prediction, released alongside this paper,
(http://mathgene.usc.es/snipper/hairclassifier.html), likelihood
ratios provide assignment to two or four hair colour classes in
a straightforward way. Snipper retains the flexibility to handle
missing SNP genotypes, common when analysing challenging
forensic material such as highly degraded DNA. Therefore,
profiles where weakly predictive SNPs are missing are valid
and likely to obtain high probabilities for distinct hair colours.
However, it is important to consider that likelihood values
generated are dependent on which of the 12 SNPs are failing
as well as the potential negative effect on likelihoods of such
incomplete data on the LRs obtained.

DAPC provided an informative description of the genetic
clusters obtained with the SNPs we identified to be most as-
sociated with hair colour. Although DAPC demonstrated that
hair colour prediction using eight colour categories is not fea-
sible, it is noteworthy that the DAPC cluster arrangement
corresponds to the incremental colour patterns ranging from
fair (blond) via intermediate tones to dark (black) hair colour.
Moreover, the red tones cluster separately from those of the
other hair colours, emphasising the different genetic back-
ground of the RHC phenotype.

Expressed by AUC values, the 12 SNP set predicted red,
blond and black hair colours with 88% overall accuracy in the
complete sample set (training and testing set samples) apply-
ing cross-validation (Fig. 2a). However, prediction success for
brown hair colour remains well below these levels at 64 %
accuracy. These results contrast with those of Branicki’s study
that achieved balanced AUC values for the four hair colours.
While brown hair has the lowest predictive accuracy in our
study, Branicki reported the highest error rate for blond hair
(19 %). After recent reference database enlargements, the
Erasmus HIrisPlex Phenotyping Webtool (http://www.
erasmusmc.nl/fmb/resources/Irisplex_HIrisPlex/?laHng=en)
gives AUC values of 81 % for blond, 75 % for brown, 92 %
for red and 85 % for black hair [29]. When applying 22 of the

24 markers included in the HIrisPlex assay to our complete
sample set by cross-validating genotype data, we obtain AUC
values for all colours of 93% for red, 86% for black, 88% for
blond and 64 % for brown. In general, the overall predictive
success reported by HIrisPlex is slightly higher (83.3 %) than
with our sample set applying 22 of the 24 HIrisPlex SNPs (82.
7 %). Moreover, the overall predictive success of 22 HIrisPlex
markers is also higher than with our best 12 markers (81.9 %)
when applying our whole sample set. A further extension of
these assessments to 50 hair colour-associated SNPs did not
result in an improvement of prediction power. This outcome
clearly demonstrates that the additional markers investigated
in this study do not improve the accuracy of the 12 SNP set or
HIrisPlex. However, bias in outcomes may also be due to the
differences in the number of study samples, as HIrisPlex is
based on a much larger sample size than our study.

The examination of our profiles with the HIrisPlex
Phenotyping Webtool shows a similar picture of predictive
success. The prediction of red hair colour in our total sample
set provides the highest success rate (83%), followed by black
(81 %), blond (75 %) and brown hair (63 %).

On the whole, the prediction systems for HIrisPlex and
Snipper both show optimum predictive performance for red
hair. HIrisPlex predicts black hair better than blond, while we
found black hair had lower prediction success than blond. The
enhanced black hair colour prediction by the HIrisPlex
Webtool could be explained in part by the inclusion of
Japanese samples (n=50) representing a non-European black
hair cohort that improves black hair prediction overall [29].
However, inference of brown hair is more error-prone in both
predictive systems. To some extent, this could be due to phe-
notyping inconsistency as brown hair is an intermediate col-
our covering the largest range from light brown (nearly blond)
to dark brown (nearly black). Classification of a continuous
variable covering such a value range by applying training set
data with discontinuous definitions will diminish the observed
power of statistical testing. This effect handicaps accurate col-
our discrimination, and the results from different reported hair
colour studies are therefore very difficult to compare. The
Fischer-Saller hair colour chart used for this study covers a

Table 1 Predictive performance (apparent success) for four hair colour categories from Snipper analysis using rs12913832-rs112903 as independent
markers (left) or treating them as a paired haplotype (right)

12 independent
SNPs

Prediction 11 SNPs
(rs1129038-12913832 haplotype)

Prediction

Brown (%) Blond (%) Red (%) Black (%) Brown (%) Blond (%) Red (%) Black (%)

Samples with
brown hair

68.89 8.89 5.56 16.67 Samples with brown hair 74.44 8.89 4.44 12.22

Blond 6.15 90.77 3.08 0.00 Blond 6.15 90.77 3.08 0.00

Red 5.00 10.00 85.00 0.00 Red 5.00 10.00 85.00 0.00

Black 20.00 1.82 0.00 78.18 Black 21.82 3.64 0.00 74.55

Bold values indicate successful predictions of hair colour phenotype
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large range of brown tonalities (Supplementary Fig. S3, letters
P to W), but these do not represent the full range of brown
shades observed during this study. Furthermore, use of the
Fischer-Saller chart seems to be more appropriate for pheno-
typing populations of northern Europe compared to the south
since the fair hair colour range (fair/dark blond) is over-
represented in contrast to the limited dark hair sample range
(dark brown/black). A lower brown hair colour predictive
power could be further attributed to a lack of full marker
coverage, epigenetic effects [48] and/or environmental influ-
ences. It is well known that hair colour often changes during
an individual’s lifetime, and such shifts include the darkening
of blond hair colour in particular [19]. This effect, as well as its
implication for hair colour inference in forensic analysis, was
described previously by Walsh [27] and Branicki [48].

Finally, it is important to highlight several limitations to the
present study. Although we investigated an exploratory panel
of 63 SNPs consisting of established hair colour markers from
the HIrisPlex assay as well as additional markers for which
associations to human pigmentation traits were previously
identified, we did not improve the predictive accuracy of the
HIrisPlex assay. It is also evident that the classification suc-
cess of our 12 SNP set remains below the performance of
HIrisPlex. Moreover, our assessments have less statistical
power since they are based on a smaller sample set than the
studies by Walsh et al. HIrisPlex can predict eye and hair
colour simultaneously while the 12 SNP set presented here
is restricted to hair colour alone. The rs1129038-12913832
haplotype are the only markers in common with the 13 SNP
set we published for eye colour inference [30]. In conclusion,
the 12 SNP set presented is not intended to be an alternative
forensic test to HIrisPlex, but the additional SNPs we identi-
fied to be associated with hair colour and those in HIrisPlex
that were not included in the 12 certainly merit further studies
of the relative effect of different pigmentation trait predictors.
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